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Abstract

Regional analysis of cortical thickness has been studied extensively in building imaging 

biomarkers for early detection of Alzheimer’s disease but not its interregional covariation of 

thickness. We present novel features based on the inter-regional covariation of cortical thickness. 

Initially, the cortical labels of each subject are partitioned into small patches (graph nodes) by 

spatial k-means clustering. A graph is then constructed by establishing a link between 2 nodes if 

the difference in thickness between the nodes is below a certain threshold. From this binary graph, 

a thickness network is computed using nodal degree, betweenness, and clustering coefficient 

measures. Fusing them with multiple kernel learning, it is observed that thickness network features 

discriminate mild cognitive impairment (MCI) converters from controls (CN) with an area under 

curve (AUC) of 0.83, 74% sensitivity and 76% specificity on a large subset obtained from the 

Alzheimer’s Disease Neuroimaging Initiative data set. A comparison of predictive utility in 

Alzheimer’s disease and/or CN classification (AUC of 0.92, 80% sensitivity [SENS] and 90% 

specificity [SPEC]), in discriminating CN from MCI (converters and nonconverters combined; 

AUC of 0.75, SENS and SPEC of 64% and 73%, respectively) and in discriminating between MCI 

nonconverters and MCI converters (AUC of 0.68, SENS and SPEC of 65% and 64%) is also 

presented. ThickNet features as defined here are novel, can be derived from a single magnetic 

resonance imaging scan, and demonstrate the potential for the computer-aided prognostic 

applications.
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1. Introduction

Today, Alzheimer’s disease (AD) is the most common type of dementia, accounting for 

60%–80% of the cases (Alzheimer’s Association, 2012), for which definitive diagnosis can 

only be made with the histopathologic confirmation of amyloid plaques and neurofibrillary 

tangles. Recent reports suggest that the Alzheimer pathology begins decades before any 

clinical symptoms appear (Amieva et al., 2008; Braak and Braak, 1991; Braak and Del 

Tredici, 2011), which highlights the importance and challenge in early detection of AD.

Structural magnetic resonance imaging (sMRI, T1-weighted) offers a noninvasive way to 

image and analyze the structure of the brain (high tissue-contrast) at 1 mm3resolution and is 

routinely used in clinical practice. Structural alterations associated with AD can be detected 

before the onset of clinical symptoms (Jack et al., 2010), supporting the use of structural 

imaging features for the early detection of AD. A large body of research on neuroimaging 

techniques exists for the detection of AD and for the prediction of conversion in mild 

cognitive impairment (MCI), including analysis of gray matter densities (Duchesne et al., 

2010; Koikkalainen et al., 2011; Misra et al., 2009), hippocampal shape (Beg et al., 2013; 

Coupé et al., 2012; Wang et al., 2007), amyloid deposition (La Joie et al., 2012; Tosun et al., 

2011; Villain et al., 2012), functional magnetic resonance imaging (MRI) (Bullmore and 

Sporns, 2009; Wee et al., 2012), and also employing multimodality approaches (Walhovd et 

al., 2010; Westman et al., 2012). sMRI features have also been successfully applied for the 

differential diagnosis of AD and frontotemporal disease (Du et al., 2007; Raamana et al., 

2012; Woodward et al., 2010).

The early-stage neurodegeneration observed in AD is subtle and spatially distributed over 

the brain, which makes cortical thickness features an ideal imaging-biomarker for AD. 

Cortical thickness has been the focus of numerous studies for the detection of probable AD 

(Desikan et al., 2009; Dickerson et al., 2009; Eskildsen et al., 2013; Mcevoy et al., 2011; 

Wolz et al., 2011). These studies show that early-stage cortical thickness by itself using only 

baseline MRI scans proved to be useful for the early detection of AD, but with limited 

utility, as was shown in Cuingnet et al. (2011). Cuingnet et al. (2011) performed an objective 

comparison of the predictive performance of published image processing methods, on a 

common data set, to predict conversion to AD in MCI patients. They observed that the 

performance of various method based solely on baseline cortical thickness has been limited 

at the best in accurately predicting conversion to AD in MCI subjects.

There has been a plethora of research in ROI-based analysis of cortical thickness (Cuingnet 

et al., 2011), but only few studies analyzed the covariation of thickness in different regions 

of the brain. We would like to capture the nature of the pairwise changes to characterize the 

topographic covariation in cortical thickness as associated with the progression of AD. 

Establishing links (akin to edges in a graph) using cortical thickness or gray matter density 
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extracted from sMRI allows for such a study, and these approaches are only beginning to be 

explored. Here, we briefly summarize the different studies published so far and refer the 

reader to the following publications for a comprehensive review of studies on anatomic 

covariance (Alexander-Bloch et al., 2013a; Evans, 2013; Iturria-Medina, 2013; Wen et al., 

2011). These studies can broadly be divided into 2 categories based on the type of anatomic 

features they use, that is, whether they use cortical morphometric features (He et al., 2008) 

versus gray matter density and/or volume (Mechelli et al., 2005; Tijms et al., 2012; Yao et 

al., 2010) to establish links and whether they utilize only the cortex (Chen et al., 2008) or the 

brain volume entirely (Tijms et al., 2012; Wee et al., 2012) or specific volume of interest 

(Mechelli et al., 2005; Seeley et al., 2009). Initial studies on structural covariance were 

pioneered by the Alan Evans group based on the analysis of vertex-wise correlations in 

thickness Lerch et al. (2006). This article was followed by (Chen et al., 2008; Gong et al., 

2012; He et al., 2008, 2009a; Khundrakpam et al., 2013), which revealed insights into the 

aberrant network properties. For example, (He et al., 2007, 2008, 2009a, 2009b) used graph-

theory analysis to study the group differences in AD relative to controls (CN) and revealed 

an abnormal small-world architecture, significantly reduced nodal centrality, increased local 

efficiency (local clustering), and decreased global efficiency (increased mean path length).

Gong et al. (2012) presented a comparison of patterns of covariance in cortical thickness and 

that of diffusion based fiber connections. This comparison suggested that positive 

correlations in cortical thickness might be mediated by a fiber pathway, and that cortical 

thickness correlations present exclusive information, that is not offered by fiber connections. 

Chen et al. (2008) demonstrated the modularity of the human cortical network (based on a 

network of correlations in cortical thickness) and its organization into different topologic 

modules overlapping closely with known functional domains.

Alexander-Bloch et al. (2013b) analyzed a longitudinal data set of healthy young people and 

constructed structural and maturational networks based on the rate of change in thickness 

over time. They studied the link between maturational networks and structural networks to 

demonstrate the similarity in their topologic properties (global and nodal). Khundrakpam et 

al. (2013) studied developmental changes in structural network properties of cortical 

thickness and revealed a significant reduction in local efficiency, modularity, and increased 

global efficiency in late childhood.

Bassett et al. (2008) analyzed group differences between schizophrenia and healthy controls 

to show that schizophrenic patients exhibited reduced loss of frontal hubs and emergence of 

nonfrontal hubs. Raj et al. (2010) analyzed the covariance networks of thickness and 

curvature to localize seizures in temporal lobe epilepsy and present an interesting graph-

level statistical analysis. Seeley et al. (2009) studied the relationship between 

neurodegeneration, anatomic covariance and intrinsic connectivity networks in 5 

neurodegenerative syndromes. They showed that the patterns in syndrome-specific atrophy 

mirror that of structural and functional covariance (using the maximal atrophic region as the 

seed region).

These studies presented so far assert the utility of covariance properties in studying disease-

related changes. However, these studies were mostly limited to either studying the existence, 
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or lack thereof, of small world properties, for example He et al. (2008), or any group 

differences in covariance properties that exist between patient and CN groups, for example 

Bassett et al. (2008). These studies have not, to date, constructed any features from such 

inter-regional covariation or performed evaluation of its diagnostic utility. We propose to 

utilize covariation patterns in cortical thickness as an imaging biomarker for AD. The 

progression of AD generally follows a stereotypical spatial pattern and hence pairwise 

covariation between cortical surface patches will likely complement existing features for 

early detection based on cortical thickness. We construct novel features based on the 

network properties of inter-regional links in the brain defined using cortical thickness. 

Furthermore, we fuse these thickness network (ThickNet) features using probabilistic 

multiple kernel learning approach and investigate their predictive utility in the detection of 

prodromal AD (MCI converters) on a large cohort from Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) data set. Further, we compare its performance in discriminating between 

CN and AD, CN and MCI converters (MCIc), MCIc and MCI nonconverters (MCInc) as 

well as between CN and MCI (MCIc + MCInc, combined).

2. Methods

2.1. Data set

Data used in the preparation of this article were obtained from the ADNI database 

(adni.loni.ucla.edu). The ADNI was launched in 2003 by the National Institute on Aging, 

the National Institute of Biomedical Imaging and Bioengineering, the Food and Drug 

Administration, private pharmaceutical companies and nonprofit organizations, as a $60 

million, 5-year public-private partnership. For up-to-date information, see www.adni-

info.org.

Cuingnet et al. (2011) compared the performance of various published classification 

methods on fixed training and testing sets resulting in a comparable set of performance 

metrics. To enable comparison with a large set of similar methods, we utilized the same 

subset of 509 participants as studied in Cuingnet et al. (2011), except for a few exclusions 

whose cortical parcellation did not meet our quality control metrics, see Appendix for 

further details. We refer the reader to Cuingnet et al. (2011) for the complete description of 

the participants and demographics for the study cohort. Briefly, our study consists of 481 

T1-weighted MR scans acquired at 1.5 T. MRI scans from the baseline visit were used when 

available (and from the screening visit otherwise). This gave MR images from 159 CN 

subjects, 56 MCIc subjects (who had converted to AD within 18 months), 130 MCI 

nonconverters (MCInc) subjects, and 136 AD subjects. In this article, we use the term 

prodromal AD to denote MCI converters (MCIc), and the 2 terms are used interchangeably.

2.2. Thickness measurement and processing

Initial cortical reconstruction and volumetric segmentation of the whole brain were 

performed with the Freesurfer image analysis suite (Fischl et al., 2002) to obtain pial and 

WM and/or GM surfaces. The resulting cortical parcellations were quality controlled. Errors 

were corrected whenever possible (they were excluded otherwise). In the space between the 

GM and/or WM and pial surfaces, a discrete approximation of Laplace equation was solved 

Raamana et al. Page 4

Neurobiol Aging. Author manuscript; available in PMC 2018 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Gibson et al., 2009; Yezzi and Prince, 2003) using the tools developed by our group. 

Streamlines of this harmonic function define corresponding points on the surfaces, and the 

Euclidean distance between these points defines the cortical thickness. To perform group 

analysis, we registered the surface of each subject in the study to the surface of a common 

atlas (derived from averaging over 80 healthy subjects) using the tools from Fischl et al. 

(2002), see Appendix for further details. This establishes vertex-wise correspondence and 

enables group-wise analysis. Finally, cortical thickness was smoothed with a 10-mm full 

width at half height gaussian kernel to improve the signal-to-noise ratio and statistical power 

for subsequent analysis (Lerch and Evans, 2005).

2.3. Novel dimensionality reduction

Each cortex surface contained 327,684 vertices in the whole brain, and we have a limited 

number of subjects. To avoid the curse of dimensionality, we partitioned each cortical label 

(such as posterior cingulate and so forth from the 68 Freesurfer-derived cortical labels) 

containing thousands of vertices into a small number (say 10) of partitions by clustering 

vertices, within each label, using k-means clustering of vertex coordinates. The thickness 

feature for each subpartition is defined as the average thickness across vertices in that 

partition. This simple novel approach not only reduces the dimensionality of the features but 

also does it in an anatomically meaningful way, as opposed to other dimensionality 

reduction methods (such as PCA) which transform the features to an entirely different space 

which may lack physical meaning and anatomic relevance. Note that, clustering is done 

within each Freesurfer label, which prohibits linking vertices across different adjacent 

labels. Moreover, the vertex density of Freesurfer parcellation is sufficiently even and high 

to satisfy the k-means assumptions (Lee et al., 2006), and visual verification of partitioning 

confirmed the resulting label subdivisions were appropriate. Visualization of this subdivision 

of the cortex into 680 partitions is shown in Fig. 2B and 2A. As they are all registered to a 

common atlas, this subdivision of the cortex is propagated into the cortical surface of each 

subject to establish correspondence for further analysis.

It is worth noting that certain trade-offs exist in deciding the total number of partitions 

(TNP) for this method. When we choose to average across the entire freesurfer label (which 

can be quite large covering many gyri and sulci), we may lose the discriminatory signal. In 

contrary, when the TNP is excessively large, for example over 5000, we risk the curse of 

dimensionality as well as making the method overly sensitive to noise. Hence, we study the 

performance of this method for different values of TNP = 340, 680, 1020, 1360, and 1700, 

to avoid making an arbitrary choice.

The aforementioned parcellation method we used is very similar to those previously 

reported. For example, Hagmann et al. (2008) utilized region-growing method for the 

subdivision of each of the Freesurfer labels into a large number of patches, which is very 

similar to our method of clustering neighbouring vertices using k-means clustering method. 

The 2 methods are very similar, except for the difference in the stopping criteria of 

clustering. We restrict the number of patches for each FS label (say n = 10), whereas 

Hagmann et al. (2008) restrict the maximum size of patches to be 1.5 cm2. In fact, the 

average patch size resulting from our method using 10 patches per Freesurfer label is 1.59 
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cm2, which is very close. As noted previously, we comprehensively study the performance 

of our method for different number of patches (n = 5 to 25 in steps of 5), to avoid making an 

arbitrary choice as opposed to a fixed choice of 1.5 cm2 in Hagmann et al. (2008).

2.4. ThickNet features

Once the pial surface is partitioned into large number of small sub-partitions (thought of as 

nodes), a network (graph) is constructed by establishing a link between 2 nodes if the 

absolute difference in thickness is below a specified threshold. The term network is used 

here in the abstract sense to mean a mathematical graph and not a functional and/or 

structural network connected by physical fiber tracts or connections. From this binary 

undirected graph, we compute thickness network measures, we term them ThickNet 

features, such as nodal degree, betweenness centrality, and clustering coefficient to represent 

each individual brain. ThickNet measures are intrinsic to each subject and offer insight into 

regional correlations in cortical thinning. The extraction of ThickNet features in illustrated 

in the form of a flowchart in Fig. 1.

Suppose, N is the set of all nodes in the network (the number of nodes n = NPP × 68, NPP = 

number of partitions per freesurfer label in each of the 68 freesurfer labels), and L is the set 

of all links in the network (l = number of links). Note, N equals TNP which is the total 

number of partitions in each subject’s cortical surface. Let (i; j) be a link between nodes i 
and j (i; j∊N) and aij is the link status between i and j: aij = 1 when link (i; j) exists; aij = 0 

otherwise. A link is defined between i and j, if |MTi − MTj|< = α, where MTx represents the 

mean thickness in the node x; x∊N. Here, α is the threshold to establish a link. A lenient 

threshold (α > 0.5 mm) allows large number of links in the cortex, whereas a stringent 

threshold (α ≥ 0.5 mm) allows relatively fewer links. It is important to note that spatial 

distance or spatial adjacency is not a criteria, as the method searches all possible pairwise 

links between all cortical subpartitions.

We chose to utilize nodal degree (measure of how connected each node is), betweenness 

centrality (measure of centrality) and clustering coefficient (measure of segregation) from 

the binary graph as properties to describe the network (Rubinov and Sporns, 2010). In brief, 

for a given node i, these are defined as:

(1)

(2)

(3)
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where  is the number of triangles around node i; ρhj is the number of 

shortest paths between h and j and ρhj(i) is the number of shortest paths between h and j that 

pass through i. Please note, ki in Equation (3) is the nodal degree defined in Equation (1).

Intuitively, the degree of an individual node is equal to the number of links connected to that 

node, which therefore reflects the level of interaction of that node in the network. It is 

hypothesized that there are central nodes which participate in many short paths in the brain 

network. Betweenness centrality measures the fraction of all shortest paths in the network 

that pass through a given node. It is also known that human brain segregates specialized 

processing into interconnected groups of brain regions (clusters), clustering coefficient 

measures the clustering connectivity around a given node.

The ThickNet features for the CN and MCIc classes, in the form of group-differences, are 

visualized in Figs. 2 and 3. This may be helpful in obtaining better insight into the actual 

features in different classes. Fig. 3 shows that nodal degree exhibits the largest differences 

followed by betweenness and then clustering coefficient. Although the nodal degree features 

exhibit the largest differences, the differences are located in separated clusters (such as the 2 

clusters in the post-central region) compared with other ThickNet features, which needs to 

be investigated further in future. These patterns of differences in nodal degree are similar to 

those seen in CN versus AD (not shown here for lack of space), which are just more 

pronounced and wider spread.

It is to be noted that the thickness network (as defined in this article) is an abstract construct 

that links 2 nodes based on similarity of thickness values between those nodes. This 

approach for network construction in the context of AD is similar to the extensive body of 

work by Evans et al. and other groups showing the construction of covariance structural 

networks based on cortical thickness or gray matter density in general. We are working on 

relating these networks to a biological explanation that relates these abstract constructs to 

the changes seen in the course of AD, and also developing appropriate visualizations that 

can aid in intuitive understanding of these ThickNet networks.

3. Evaluation of predictive utility

The ThickNet features reveal different properties of the regional links in thickness in the 

human brain. To maximize their utility for the early detection of AD, these features can be 

fused to form a composite set of features. Multiple kernel learning (MKL) is a natural choice 

for such a fusion of different features for the classification task. The procedure to evaluate 

the predictive utility is described in the following sections and also presented as a flowchart 

in Fig. 4.

3.1. Probabilistic MKL

One such method is the Variational Bayes probabilistic MKL (VBpMKL) which has been 

successfully applied to protein fold recognition (Damoulas and Girolami, 2008). This 

method combines multiple feature spaces, allowing a different kernel (e.g., gaussian and 

polynomial) for each feature space to embed them in a high-dimensional similarity space, 

Raamana et al. Page 7

Neurobiol Aging. Author manuscript; available in PMC 2018 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



using a variational Bayes approximation to form a composite kernel. This composite kernel 

is fed to a multi-class model which applies Bayes theorem to learn the significance of each 

feature, as well as the kernel weights and kernel parameters automatically, without resorting 

to ad hoc parameter tuning. VBpMKL outputs probability estimates of membership to each 

class for each test subject, from which we can compute performance metrics (such as 

accuracy) as well as construct the receiver operating characteristic (ROC) curve.

3.2. Feature selection

Before fusion, further feature selection is done (within each feature set separately), by 

ranking each partition by its 2-sample t-statistic computed from the training set alone. All 

the partitions are ranked by their t-statistic, and the top K partitions are selected for training 

the classifier. We computed t-statistic with the alternative hypothesis that means are not 

equal assuming the variances are not equal, using the following formulae:

(4)

Here, s2 is an unbiased estimator of the variance of the 2 samples X1 and X2.  and ni are 

the mean and the number of participants in each sample i = 1, 2, respectively.

3.3. Largest reduced dimensionality to avoid over fitting

There is an empirical relationship between the number of features (K) used to train the 

classifier and the minimum size of the training sample needed to avoid the curse of 

dimensionality, which is that for K number of features and small probability of error p(e), 

the minimum sample size required  (Fitzpatrick and Sonka, 2000). If one 

would like to keep p(e) below 5% with K features, we need at least Nmin = K /(2 × 0.05) = K 
× 10 subjects for training. We use this relation to determine the maximum number of 

features that can be used to train the classifier with an Ntrain number of samples in the 

training set, that is, Kmax = ↓ (Ntrain/10). This would give a Kmax = 12, 5, 15 and 5 for the 

experiments AD and/or CN, MCIc and/or CN, and MCI (MCIc + MCInc)/CN and MCIc/

MCInc, respectively, when using the evaluation method to be described below in Section 

3.4. We propose novel application of this approach derived from analytical results to set the 

largest dimensionality to avoid the possibility of over fitting.

After the selection of K features from each ThickNet measure, the 4 feature subsets are fed 

to the MKL classifier separately for each feature set. Depending on the combination strategy 

and parameters selected, this can sometimes result in simple concatenation of the subset (K) 

of features to arrive at a bigger set of features (4*K) to train the classifier. But this is only 

specific to some choices and is not always the case.

3.4. Repeated hold-out stratified Training set

Using this combination, that is, t-stat feature selection followed by VBpMKL as the 

classification system, we evaluate its predictive utility using a novel form of repeated 
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holdout method to handle class-imbalance. We eliminate class imbalance in the training set 

by first selecting a fixed percentage of subjects from the smallest class, and then selecting 

the same number from all the classes in the data set. We denote it as the repeated hold-out, 

stratified training set (RHsT) evaluation method. It is stratified in the sense that each class 

has an equal number of subjects in the training set to eliminate any class imbalance that may 

arise for typical uses of popular cross-validation methods. In each repetition, we hold out 

Ntrain subjects from each class for training and reserve the rest for testing the classifier. Here, 

Ntrain is determined by 95% of the smallest class in the experiment. For example, in the CN 

(n = 159) versus AD (n = 136) experiment, training set would consist of Ntrain = ↓(0.95 × 

136) = 129 subjects from both CN and AD classes and the testing set would have 30 CN and 

7 AD subjects. In each repetition, we compute the accuracy, sensitivity, and specificity as 

well as area under curve (AUC) by constructing an ROC, from the predictions generated for 

the corresponding unseen test set. This method is repeated 100 times, each time creating 

random training and/or test sets, to avoid the bias that can arise from a single training and/or 

test sets (Cuingnet et al., 2011). The mean performance metrics, and their standard 

deviations, from the 100 repetitions are reported.

3.5. Comparison of performance improvement

To analyze performance improvement contributed by the proposed ThickNet (TN) features, 

we compared its performance relative to mean thickness (MT) features alone. The 

classification power of mean thickness features alone, in place of the ThickNet features, is 

evaluated while keeping the rest of the evaluation procedure (RHsT) the same. The best 

performance of the MT features (highest AUC over different values of TNP) is compared 

with that of TN method, and the results are shown in Table 2.

We tested this using 2 measures of AUC: (1) covering the entire ROC curve, which tests 

whether one method is better than the other for the entire range of sensitivity (blanket test); 

and (2) covering only a high-specificity portion of ROC curve which focuses on clinically 

relevant portion of the ROC. Accordingly, we define partial AUC (pAUC) as the AUC under 

partial ROC curve bounded by specificity over 85%. This upper threshold of 85% specificity 

is commonly accepted for a clinically relevant biomarker and/or test (McClish, 1989).

4. Results

The evaluation method as described in Section 3, and graphically summarized in Fig. 4, is 

applied to the fusion of the following 4 feature sets: mean thickness, nodal degree, 

betweenness centrality, and clustering coefficient at each partition. From preliminary trials in 

AD and/or CN classification, we observed the best performance from VBpMKL using a 

polynomial kernel (third degree) for each feature set and thereby fixing it as the kernel of 

choice for this study. The performance of the fusion method is evaluated in the following 4 

binary classification experiments: CN versus AD, CN versus MCIc, CN versus MCI, and 

MCInc versus MCIc, to compare their predictive utility under different levels of separability.

For each such experiment, there are 2 parameters that change the feature extraction (of the 

mean thickness and the 3 network features): TNP and the link threshold α. Choice of a 

larger or smaller TNP is equivalent to selecting a different parcellation scheme (coarse to 
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finer resolution), and selecting different values for α can be interpreted as selecting different 

types of features, that is, weak connections with lenient alpha (large tolerance for similarity), 

and strong connections with stringent alpha (relatively low tolerance for similarity). To avoid 

making an arbitrary choice for these parameter values, we have studied the performance of 

our method for different combinations of TNP and α, with TNP = 340, 680,1020,1360, and 

1700, and α was varied from 0.1 mm to 1.5 mm, in steps of 0.1 mm. The AUC for all the 

combinations are visualized in Fig. 5. These results show that AUC for ThickNet features is 

high for CN versus AD, and it is robust for a wide range of values for TNP and α. The 

results in the other three experiments show that (1) AUC decreases with decreasing 

separability across the 4 experiments; and (2) AUC is robust with varying values for TNP 

and α in all the experiments. These figures display the same trends that AUC exhibited in all 

the experiments. The results in 3 metrics combined assert the promising performance of 

ThickNet classifier, as well as its robustness to the parameters of feature extraction.

The best performance (highest AUC) of the ThickNet fusion classifier for different 

experiments are summarized in Table 1, with different performance metrics and the optimal 

ThickNet parameters TNP and α. Table 1 shows that ThickNet classifier exhibits not only 

high AUC but also a balanced performance in terms of similar sensitivity and specificity. 

Although there is a class imbalance in the data set, neither specificity nor sensitivity is over-

learned by our classifier. Corresponding ROCs are visualized in Fig. 6, which are 

constructed by averaging the 100 ROCs obtained from the 100 repetitions of the RHST, 

using the vertical averaging method as described in Fawcett (2006).

The results from the comparison of performance improvement, as described in Section 3.5, 

are shown in Table 2 for all the classification experiments presented in Table 1. The 

corresponding ROCs for ThickNet and MT are compared in Fig. 6. Further summary of the 

comparison between MT and ThickNet features are presented in the form of descriptive 

statistics in Table 3.

The average weights from the 100 repetitions of RHsT for the ThickNet features, indicating 

their individual significance, are visualized in Fig. 7. The visualizations for sensitivity and 

specificity estimates of the ThickNet fusion classifier, in the lines of Fig. 5, are presented in 

Figs. 8 and 9, respectively.

5. Discussion

Our results confirm a general trend that the classification performance is the highest in CN 

versus AD experiment and it gradually decreases as the problem becomes increasingly 

challenging from CN versus MCIc, CN versus MCI, to MCIc versus MCInc. From Table 1, 

we observe that our method discriminates AD from CN with an AUC of 0.92. We can also 

observe that the performance of our method decreases as the problem becomes increasingly 

challenging, that is, in AUC for CN/MCI classification is 0.75 with 64% sensitivity and 73% 

specificity; in MCInc/MCIc classification, AUC is 0.68 with 65% sensitivity and 64% 

specificity, which is to be expected.
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The most promising result in Table 1 is the performance in discriminating MCIc from CN 

with an AUC of 0.83 (74% sensitivity and 76% specificity). For a similar experiment, the 

mean thickness in each freesurfer label (or ROI, many times larger than our partition), noted 

as the thickness-ROI method in Cuingnet et al. (2011) resulted in 65% sensitivity and 94% 

specificity. This is not directly comparable with our result, as we fuse multiple ThickNet 

features whereas other study uses mean thickness alone; however, it demonstrates the 

improvement achieved by using the sophisticated method.

Another study (Eskildsen et al., 2013) that utilized mean thickness features for classification 

between progressive MCI (conversion in 24 months, results for 18 months are not reported) 

and stable MCI, reports an AUC of 0.67, 59% sensitivity and 70% specificity. For a similar 

experiment using mean thickness on classification between MCInc (stable MCI) and MCIc 

(conversion in 18 months), we obtain AUC of 0.68 with 65% sensitivity and 64% specificity. 

Our performance is slightly better than (Eskildsen et al., 2013), although it is to be noted the 

subsets being studied are different, and the 2 studies utilize different types of mean 

thickness. There have been many reports on MCInc and/or MCIc classification, as 

summarized in (Cuingnet et al., 2011), mostly with low classification performance. This 

may be because of MCInc being a very heterogeneous and unstable diagnostic group.

Another interesting point to note from Table 1 is that when the separability is higher (CN vs. 

AD and CN vs. MCIc), the best performance was obtained with a coarse partitioning (TNP = 

340, relatively large patches) and a stringent threshold (α = 0.3 mm that results in only few 

links). In contrast, in challenging problems with lower separability (CN vs. MCI and MCIc 

vs. MCInc), our method needed a very intricate network (TNP > 1000 resulting in large 

number of small areas and a lenient α = 1.3 mm resulting in many links). A lenient α results 

in higher nodal degree (each node is connected to larger number of nodes) and smaller 

centrality (discourages local clustering) and clustering coefficient. This makes sense 

clinically and conforms to our understanding of the disease stages.

Figs. 8 and 9 presenting sensitivity and specificity, show that the performance of our method 

is robust across a wide range of values of the parameters TNP and α. Moreover, we notice 

that these metrics follow the same trends as AUC, when the performance of ThickNet fusion 

method is compared across the 4 different experiments.

The results presented thus far demonstrate the diagnostic utility of ThickNet features. An 

objective comparison with mean thickness (MT) features, as described in Section 3.5, is 

performed. The results from the comparison are presented in Fig. 6, Tables 2 and 3. Fig. 6 

shows that ThickNet outperformed MT (encompassing the ROC), over a wide range of 

specificities, in all the experiments except for CN versus MCI. As most real features perform 

better than a random classifier, the ROC curves tend to be very similar in the low-specificity 

range (e.g., false positive range >15%). When we consider the clinically relevant pAUC (the 

second measure of ROC area), the results in Table 2 show that ThickNet method exhibits 

higher pAUC in all the experiments. Overall, these results comparing the classification 

performance of ThickNet features directly with mean thickness indicate that ThickNet 

features do add value by providing equivalent or better performance than mean thickness 

Raamana et al. Page 11

Neurobiol Aging. Author manuscript; available in PMC 2018 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



alone. However, we should investigate further as to the clinical significance of the 

performance offered by the ThickNet features to understand its prognostic implications.

5.1. Individual significance of ThickNet features

For each run of RHsT, we obtain not only the prediction of the test set subjects but also the 

significance of each feature set in the fused classifier, estimated by VBpMKL. This allows to 

gain further insight into the contribution of different feature sets. The average weights from 

the 100 repetitions of RHsT for the ThickNet features are visualized in Fig. 7, for the 4 

classification experiments.

Results from Fig. 7 show that all the ThickNet features are contributing to the classifier 

(non-zero weights), although in varying proportions. Note that, the contribution of mean 

thickness features is significant in all the classification problems. Whereas the contribution 

of ThickNet features increased with increasing difficulty of the classification problem, such 

as CN versus MCIc and MCIc versus MCInc. This further asserts their utility for the 

prognostic applications for early detection of AD.

6. Conclusions and future work

We present novel ThickNet features that can be extracted from a single time-point MRI scan 

and demonstrate their potential for individual patient diagnosis. As these features are not 

specific to a disease, they can be easily applied to other prognostic problems in 

neuroimaging. The diagnostic utility of ThickNet features is demonstrated by applying 

probabilistic MKL (preceded by t-statistic feature selection) to the challenging problem of 

detection of prodromal AD, that is, MCIc based on baseline MRI scan alone. We report an 

AUC of 0.83 for CN/MCIc classification problem with 74% sensitivity and 76% specificity, 

which is promising. Furthermore, we present a detailed comparison of the classification 

performance of the proposed ThickNet fusion method in AD/CN, MCIc/MCInc and MCI 

(MCIc + MCInc)/CN classification experiments.

We would like to note that there is likely significant room for improvement, for example, by 

computing more ThickNet features using additional measures of centrality, segregation, hub-

likeness, and integration, as well as constructing weighted graphs from the regional links in 

cortical thickness as opposed to current choice of binary and undirected graphs in this study. 

Moreover, we could apply different (or multiple) kernels for each feature as well as tuning 

the kernel parameters, as opposed to the current results obtained with a fixed kernel 

(polynomial kernel, degree = 3). This framework is easily extensible, for example, in 

including features from other modalities such as positron emission tomography, diffusion-

tensor imaging, as well as other morphologic and neuropsychological features. Each new 

feature can be tuned with an additional kernel, which can be easily fused with existing 

features. Moreover, as the classifier used is by design multi-class, this method can be readily 

applied to differential diagnosis, for example, discriminating AD from other types of 

dementia such as frontotemporal disease and vascular dementia and so forth.
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Appendix

Excluded subjects from quality control

Here, we list the set of subjects that were excluded from analysis in Table 4.

Estimation of the common atlas

After the extraction of cortical thickness from each subject, we registered the surface of each 

subject to that of a common atlas. This atlas is derived from averaging 80 healthy controls 

using tools from Freesurfer. With the help of Talairach transform computed for each subject, 

Talairach (MNI305) coordinates for each vertex are computed. These coordinates (from the 

80 subjects) are averaged after mapping them to the common surface (which overlays well 

on the average MNI305 volume). In the following, we list all the subjects that were part of 

this averaging in Table 5.

References

Alexander-Bloch A, Giedd JN, Bullmore E. Imaging structural co-variance between human brain 
regions. Nat Rev Neurosci. 2013a; 14:322–336. [PubMed: 23531697] 

Alexander-Bloch A, Raznahan A, Bullmore E, Giedd J. The convergence of maturational change and 
structural covariance in human cortical networks. J Neurosci. 2013b; 33:2889–2899. [PubMed: 
23407947] 

Alzheimer’s Association. 2012 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2012; 
8:131–168. [PubMed: 22404854] 

Amieva H, Le Goff M, Millet X, Orgogozo JM, Pérès K, Barberger Gateau P, Jacqmin Gadda H, 
Dartigues JF. Prodromal Alzheimer’s disease: successive emergence of the clinical symptoms. Ann 
Neurol. 2008; 64:492–498. [PubMed: 19067364] 

Raamana et al. Page 13

Neurobiol Aging. Author manuscript; available in PMC 2018 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Manuscript_Citations.pdf
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Manuscript_Citations.pdf


Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A. 
Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci. 2008; 
28:9239–9248. [PubMed: 18784304] 

Beg MF, Raamana PR, Barbieri S, Wang L. Comparison of four shape features for detecting 
hippocampal shape changes in early Alzheimer’s. Stat Methods Med Res. 2013; 22:439–462. 
[PubMed: 22653846] 

Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica. 
1991; 82:239–259. [PubMed: 1759558] 

Braak H, Del Tredici K. The pathological process underlying Alzheimer’s disease in individuals under 
thirty. Acta Neuropathologica. 2011; 121:171–181. [PubMed: 21170538] 

Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional 
systems. Nat Rev Neurosci. 2009; 10:186–198. [PubMed: 19190637] 

Chen ZJ, He Y, Rosa-Neto P, Germann J, Evans A. Revealing modular architecture of human brain 
structural networks by using cortical thickness from MRI. Cereb Cortex. 2008; 18:2374–2381. 
[PubMed: 18267952] 

Coupé P, Eskildsen SF, Manjón JV, Fonov VS, Pruessner JC, Allard M, Collins DL, Alzheimer’s 
Disease Neuroimaging Initiative. Scoring by nonlocal image patch estimator for early detection of 
Alzheimer’s disease. Neuroimage Clin. 2012; 1:141–152. [PubMed: 24179747] 

Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehericy S, Habert MO, Chupin M, Benali H, Colliot 
O, Initiative ADN. Automatic classification of patients with Alzheimer’s disease from structural 
MRI: a comparison of ten methods using the ADNI database. Neuroimage. 2011; 56:766–781. 
[PubMed: 20542124] 

Damoulas T, Girolami MA. Probabilistic multi-class multi-kernel learning: on protein fold recognition 
and remote homology detection. Bioinformatics. 2008; 24:1264–1270. [PubMed: 18378524] 

Desikan RS, Cabral HJ, Hess CP, Dillon WP, Glastonbury CM, Weiner MW, Schmansky NJ, Greve 
DN, Salat DH, Buckner RL, Fischl B, Alzheimer’s Disease Neuroimaging Initiative. Automated 
MRI measures identify individuals with mild cognitive impairment and Alzheimer’s disease. 
Brain. 2009; 132(Pt 8):2048–2057. [PubMed: 19460794] 

Dickerson BC, Bakkour A, Salat D, Feczko E, Pacheco J, Greve D, Grodstein F, Wright C, Blacker D, 
Rosas H. The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates 
to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-
positive individuals. Cereb Cortex. 2009; 19:497–510. [PubMed: 18632739] 

Du AT, Schuff N, Kramer JH, Rosen HJ, Gorno-Tempini ML, Rankin K, Miller BL, Weiner MW. 
Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal 
dementia. Brain. 2007; 130:1159–1166. [PubMed: 17353226] 

Duchesne S, Bocti C, De Sousa K, Frisoni G, Chertkow H, Collins DL. Amnestic MCI future clinical 
status prediction using baseline MRI features. Neurobiol Aging. 2010; 31:1606–1617. [PubMed: 
18947902] 

Eskildsen SF, Coupé P, García-Lorenzo D, Fonov V, Pruessner JC, Collins DL. Prediction of 
Alzheimer’s disease in subjects with mild cognitive impairment from the ADNI cohort using 
patterns of cortical thinning. Neuroimage. 2013; 65:511–521. [PubMed: 23036450] 

Evans AC. Networks of anatomical covariance. Neuroimage. 2013; 80:489–504. [PubMed: 23711536] 

Fawcett T. An introduction to ROC analysis. Pattern Recognition Lett. 2006; 27:861–874.

Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, 
Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM. Whole brain segmentation: 
automated labeling of neuroanatomical structures in the human brain. Neuron. 2002; 33:341–355. 
[PubMed: 11832223] 

Fitzpatrick, M., Sonka, M. Handbook of Medical Imaging Vol. 2: Medical Image Processing & 
Analysis (PM80) SPIE. International Society for Optical Engineering; Seattle, WA: 2000. 

Gibson E, Wang L, Beg MF. Cortical thickness measurement using eulerian PDEs and surface-based 
global topological information. Org Human Brain Mapping, 15th Annual Meeting. 2009

Gong G, He Y, Chen ZJ, Evans AC. Convergence and divergence of thickness correlations with 
diffusion connections across the human cerebral cortex. Neuroimage. 2012; 59:1239–1248. 
[PubMed: 21884805] 

Raamana et al. Page 14

Neurobiol Aging. Author manuscript; available in PMC 2018 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O. Mapping the 
structural core of human cerebral cortex. PLoS Biol. 2008; 6:e159. [PubMed: 18597554] 

He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human brain revealed by cortical 
thickness from mri. Cereb Cortex. 2007; 17:2407–2419. [PubMed: 17204824] 

He Y, Chen Z, Evans A. Structural insights into aberrant topological patterns of large-scale cortical 
networks in Alzheimer’s disease. J Neurosci. 2008; 28:4756–4766. [PubMed: 18448652] 

He Y, Chen Z, Gong G, Evans A. Neuronal networks in Alzheimer’s disease. Neuroscientist. 2009a; 
15:333–350. [PubMed: 19458383] 

He Y, Dagher A, Chen Z, Charil A, Zijdenbos A, Worsley K, Evans A. Impaired small-world 
efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion 
load. Brain. 2009b; 132:3366–3379. [PubMed: 19439423] 

Iturria-Medina Y. Anatomical brain networks on the prediction of abnormal brain states. Brain 
Connect. 2013; 3:1–21. [PubMed: 23249224] 

Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski 
JQ. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet 
Neurol. 2010; 9:119–128. [PubMed: 20083042] 

Khundrakpam BS, Reid A, Brauer J, Carbonell F, Lewis J, Ameis S, Karama S, Lee J, Chen Z, Das S, 
Evans AC, Brain Development Cooperative Group. Ball WS, Byars AW, Schapiro M, Bommer W, 
Carr A, German A, Dunn S, Rivkin MJ, Waber D, Mulkern R, Vajapeyam S, Chiverton A, Davis P, 
Koo J, Marmor J, Mrakotsky C, Robertson R, McAnulty G, Brandt ME, Fletcher JM, Kramer LA, 
Yang G, McCormack C, Hebert KM, Volero H, Botteron K, McKinstry RC, Warren W, Nishino T, 
Robert Almli C, Todd R, Constantino J, McCracken JT, Levitt J, Alger J, O’Neil J, Toga A, 
Asarnow R, Fadale D, Heinichen L, Ireland C, Wang DJ, Moss E, Zimmerman RA, Bintliff B, 
Bradford R, Newman J, Evans AC, Arnaoutelis R, Bruce Pike G, Louis Collins D, Leonard G, 
Paus T, Zijdenbos A, Das S, Fonov V, Fu L, Harlap J, Leppert I, Milovan D, Vins D, Zeffiro T, Van 
Meter J, Lange N, Froimowitz MP, Botteron K, Robert Almli C, Rainey C, Henderson S, Nishino 
T, Warren W, Edwards JL, Dubois D, Smith K, Singer T, Wilber AA, Pierpaoli C, Basser PJ, 
Chang LC, Koay CG, Walker L, Freund L, Rumsey J, Baskir L, Stanford L, Sirocco K, Gwinn-
Hardy K, Spinella G, McCracken JT, Alger JR, Levitt J, O’Neill J. Developmental changes in 
organization of structural brain networks. Cereb Cortex. 2013; 23:2072–2085. [PubMed: 
22784607] 

Koikkalainen J, Lötjönen J, Thurfjell L, Rueckert D, Waldemar G, Soininen H. Multi-template tensor-
based morphometry: application to analysis of Alzheimer’s disease. Neuroimage. 2011; 56:1134–
1144. [PubMed: 21419228] 

La Joie R, Perrotin A, Barré L, Hommet C, Mézenge F, Ibazizene M, Camus V, Abbas A, Landeau B, 
Guilloteau D, de La Sayette V, Eustache F, Desgranges B, Chételat G. Region-specific hierarchy 
between atrophy, hypometabolism, and β-amyloid (aβ) load in Alzheimer’s disease dementia. J 
Neurosci. 2012; 32:16265–16273. [PubMed: 23152610] 

Lee JK, Lee JM, Kim JS, Kim IY, Evans AC, Kim SI. A novel quantitative cross-validation of different 
cortical surface reconstruction algorithms using MRI phantom. Neuroimage. 2006; 31:572–584. 
[PubMed: 16503170] 

Lerch JP, Evans AC. Cortical thickness analysis examined through power analysis and a population 
simulation. Neuroimage. 2005; 24:163–173. [PubMed: 15588607] 

Lerch JP, Worsley K, Shaw WP, Greenstein DK, Lenroot RK, Giedd J, Evans AC. Mapping anatomical 
correlations across cerebral cortex (macacc) using cortical thickness from MRI. Neuroimage. 
2006; 31:993–1003. [PubMed: 16624590] 

McClish DK. Analyzing a portion of the ROC curve. Med Decis Making. 1989; 9:190–195. [PubMed: 
2668680] 

Mcevoy LK, Holland D, Hagler DJ, Fennema-Notestine C, Brewer JB, Dale AM, Alzheimer’s Disease 
Neuroimaging Initiative. Mild cognitive impairment: baseline and longitudinal structural MR 
imaging measures improve predictive prognosis. Radiology. 2011; 259:834–843. [PubMed: 
21471273] 

Mechelli A, Friston KJ, Frackowiak RS, Price CJ. Structural covariance in the human cortex. J 
Neurosci. 2005; 25:8303–8310. [PubMed: 16148238] 

Raamana et al. Page 15

Neurobiol Aging. Author manuscript; available in PMC 2018 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Misra C, Fan Y, Davatzikos C. Baseline and longitudinal patterns of brain atrophy in MCI patients, and 
their use in prediction of short-term conversion to AD: results from ADNI. Neuroimage. 2009; 
44:1415–1422. [PubMed: 19027862] 

Raamana P, Wang L, Rosen H, Miller B, Weiner M, Beg MF. Differential diagnosis among 
Alzheimer’s disease, frontotemporal disease and healthy aging: Comparative study using 
subcortical features. Alzheimer’s Dement. 2012; 8:P163–P164.

Raj A, Mueller SG, Young K, Laxer KD, Weiner M. Network-level analysis of cortical thickness of the 
epileptic brain. Neuroimage. 2010; 52:1302–1313. [PubMed: 20553893] 

Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. 
Neuroimage. 2010; 52:1059–1069. [PubMed: 19819337] 

Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-
scale human brain networks. Neuron. 2009; 62:42–52. [PubMed: 19376066] 

Tijms BM, Seriès P, Willshaw DJ, Lawrie SM. Similarity-based extraction of individual networks from 
gray matter MRI scans. Cereb Cortex. 2012; 22:1530–1541. [PubMed: 21878484] 

Tosun D, Schuff N, Mathis C, Jagust W, Weiner MW. Spatial patterns of brain amyloid-β burden and 
atrophy rate associations in mild cognitive impairment. Brain. 2011; 134:1077–1088. [PubMed: 
21429865] 

Villain N, Chételat G, Grassiot B, Bourgeat P, Jones G, Ellis KA, Ames D, Martins RN, Eustache F, 
Salvado O, Masters CL, Rowe CC, Villemagne VL, AIBL Research Group. Regional dynamics of 
amyloid- deposition in healthy elderly, mild cognitive impairment and Alzheimer’s disease: a 
voxel-wise PiB-PET longitudinal study. Brain. 2012; 135:2126–2139. [PubMed: 22628162] 

Walhovd K, Fjell A, Brewer J, McEvoy L, Fennema-Notestine C, Hagler D, Jennings R, Karow D, 
Dale A, Alzheimer’s Disease Neuroimaging Initiative. Combining MR imaging, positron-emission 
tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease. AJNR Am 
J Neuroradiol. 2010; 31:347–354. [PubMed: 20075088] 

Wang L, Beg MF, Ratnanather JT, Ceritoglu C, Younes L, Morris JC, Csernansky JG, Miller MI. Large 
deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia 
of the Alzheimer type. IEEE Trans Med Imaging. 2007; 26:462–470. [PubMed: 17427733] 

Wee CY, Yap PT, Zhang D, Denny K, Browndyke JN, Potter GG, Welsh-Bohmer KA, Wang L, Shen 
D. Identification of MCI individuals using structural and functional connectivity networks. 
Neuroimage. 2012; 59:2045–2056. [PubMed: 22019883] 

Wen W, He Y, Sachdev P. Structural brain networks and neuropsychiatric disorders. Curr Opin 
Psychiatry. 2011; 24:219–225. [PubMed: 21430538] 

Westman E, Muehlboeck JS, Simmons A. Combining MRI and CSF measures for classification of 
Alzheimer’s disease and prediction of mild cognitive impairment conversion. Neuroimage. 2012; 
62:229–238. [PubMed: 22580170] 

Wolz R, Julkunen V, Koikkalainen J, Niskanen E, Zhang DP, Rueckert D, Soininen H, Lötjönen J, 
Alzheimer’s Disease Neuroimaging Initiative. Multi-method analysis of MRI images in early 
diagnostics of Alzheimer’s disease. PLoS One. 2011; 6:e25446. [PubMed: 22022397] 

Woodward M, Mackenzie IRA, Hsiung GYR, Jacova C, Feldman H. Multiple brain pathologies in 
dementia are common. Eur Geriatr Medecine. 2010; 1:259–265.

Yao Z, Zhang Y, Lin L, Zhou Y, Xu C, Jiang T, Alzheimer’s Disease Neuroimaging Initiative. 
Abnormal cortical networks in mild cognitive impairment and Alzheimer’s disease. PLoS Comput 
Biol. 2010; 6:e1001006. [PubMed: 21124954] 

Yezzi AJ, Prince JL. An eulerian PDE approach for computing tissue thickness. IEEE Trans Med 
Imaging. 2003; 22:1332–1339. [PubMed: 14552586] 

Raamana et al. Page 16

Neurobiol Aging. Author manuscript; available in PMC 2018 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Flow chart describing the steps involved in the extraction of ThickNet features. Once the pial 

surfaces from all the subjects are registered to a common atlas, we subdivide the cortex of 

the atlas surface into a fixed number of partitions (or patches). This subdivision is 

propagated into cortical surface of each subject and mean thickness within each partition is 

computed for all the patches in every subject. Based on the similarity in thickness, links are 

defined between various pairs of partitions with difference in mean thickness below a certain 

threshold. The Boolean link status between all the pairwise connections forms the adjacency 

matrix of the graph. From this graph, we compute various ThickNet features. Please refer to 

Section 2.4 for a detailed description. (For interpretation of the references to color in this 

Figure, the reader is referred to the web version of this article.)
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Fig. 2. 
Visualization of the partitions on the atlas surface in the medial view (A) and lateral view 

(B), when TNP = 680. Also visualized here in C and D are the group differences in the mean 

thickness, that is, mean(CN)-mean(MCIc) at each partition, rescaled to [0,1] to enable 

comparison with other ThickNet features show in Fig. 3. Abbreviations: CN, controls; 

MCIc, mild cognitive impairment converters; TNP, total number of partitions. (For 

interpretation of the references to color in this Figure, the reader is referred to the web 

version of this article.)
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Fig. 3. 
Visualization of the differences in group means, that is, mean(CN)-mean(MCIc) at each 

partition, of the ThickNet features when TNP = 680 and α = 0.30. Left column presents the 

medial view and the right column presents the lateral view of the group differences in each 

feature. The values of each feature in A–F are normalized to [0,1] to enable comparison 

across features. These values do not have any applicable units. Abbreviations: CN, controls; 

MCIc, mild cognitive impairment converters; TNP, total number of partitions. (For 

interpretation of the references to color in this Figure, the reader is referred to the web 

version of this article.)
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Fig. 4. 
Flowchart illustrating the performance evaluation procedure utilized in this study. The 

training set is stratified in the sense that there is no class-imbalance (all the classes are equal 

in size) to limit any bias toward 1 particular class. Please note, this procedure is repeated 100 

times. In each repetition, the performance metrics are computed based on the predictions 

from the corresponding test set only. In other words, we do not pool predictions across 

different repetitions, which may invalidate the computation of AUC. That would be invalid 

because the prediction scores in different repetitions are obtained from different classifiers, 

which may not be comparable or calibrated. Abbreviation: AUC, area under curve. (For 

interpretation of the references to color in this Figure, the reader is referred to the web 

version of this article.)
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Fig. 5. 
Comparison of AUC obtained from RHsT method for each combination of NPP and α. The 

combination with the best performance in each experiment is highlighted with a black oval. 

Abbreviations: AD, Alzheimer’s disease; AUC, area under curve; MCI, mild cognitive 

impairment; MCIc, mild cognitive impairment converters; MCInc, mild cognitive 

impairment nonconverters; NPP, number of partitions per freesurfer label; RHsT, repeated 

hold-out, stratified training set; TNP, total number of partitions. (For interpretation of the 

references to color in this Figure, the reader is referred to the web version of this article.)
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Fig. 6. 
Comparison of ROC curves corresponding with the best performance of ThickNet fusion 

method in each experiment, displayed using solid lines. We also compare these ROC curves 

with those of mean thickness (MT) features. This comparison shows that ThickNet features 

outperform the MT features (dashed lines) in all the experiments except CN versus MCI. 

Abbreviations: CN, controls; MCI, mild cognitive impairment; ROC, receiver operating 

characteristic. (For interpretation of the references to color in this Figure, the reader is 

referred to the web version of this article.)
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Fig. 7. 
Individual contribution of ThickNet features toward classification in the probabilistic 

multiple kernel learning framework. These results show that all the ThickNet features 

contributed to discrimination, although in varying proportions. Note that, mean thickness 

contributed in all the classification problems, whereas the contribution of ThickNet features 

increased with increasing difficulty of the problem such as CN versus MCIc and MCIc 

versus MCInc. This only asserts their utility for the prognostic applications. Abbreviations: 

BE, betweenness centrality; CL, clustering coefficient; MT, mean thickness; ND, nodal 

degree. (For interpretation of the references to color in this Figure, the reader is referred to 

the web version of this article.)
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Fig. 8. 
Comparison of sensitivity, as a function of TNP and α, obtained from RHsT method. The 

combination with the best performance (highest AUC) in each experiment is highlighted 

with a black oval. Abbreviations: AD, Alzheimer’s disease; AUC, area under curve; MCI, 

mild cognitive impairment; MCIc, mild cognitive impairment converters; MCInc, mild 

cognitive impairment nonconverters; RHsT, repeated hold-out, stratified training set; TNP, 

total number of partitions. (For interpretation of the references to color in this Figure, the 

reader is referred to the web version of this article.)
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Fig. 9. 
Comparison of specificity, as a function of TNP and α, obtained from RHsT method. The 

combination with the best performance (highest AUC) in each experiment is highlighted 

with a black oval. Abbreviations: AD, Alzheimer’s disease; AUC, area under curve; MCI, 

mild cognitive impairment; MCIc, mild cognitive impairment converters; MCInc, mild 

cognitive impairment nonconverters; RHsT, repeated hold-out, stratified training set; TNP, 

total number of partitions. (For interpretation of the references to color in this Figure, the 

reader is referred to the web version of this article.)
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Table 3

Descriptive statistics from the comparison of the performance of ThickNet features and mean thickness 

features. Here, MT and TN are arrays of size 100 × 1 with AUCs (full or partial) for the 100 repetitions of 

holdout method

Experiment Full ROC Partial ROC

Mean(MT-TN) SD(MT-TN) Mean(MT-TN) SD(MT-TN)

CN versus AD −0.0082 0.0889   0.0002 0.0327

CN versus MCIc −0.0248 0.2060 −0.0115 0.0568

CN versus MCI   0.0095 0.1165 −0.0107 0.0322

MCIc versus MCInc −0.0134 0.2729 −0.0063 0.0456

Key: AD, Alzheimer’s disease; AUC, area under curve; CN, controls; MCI, mild cognitive impairment; MCIc, mild cognitive impairment 
converters; MCInc, mild cognitive impairment nonconverters; MT, mean thickness; ROC, receiver operating characteristic; SD, standard deviation.
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